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We consider the irreversible dynamics of the magnetization vector M in a single- 
domain particle. The dynamics is given by a stochastic phenomenological equa- 
tion due to Gilbert. It contains a damping field proportional to 19I and a corre- 
sponding white noise field component. The probability distribution function 
satisfies a Fokker-Planck equation derived by Brown. We give the overbarrier 
decay rate ~ out of a metastable minimum. First we rederive the well-known 
expression for ~c for an axially symmetric model. We argue that this result is 
unphysical. For systems of general point symmetry of the magnetic anisotropy 
energy we give ~: in both the low-damping and intermediate- to high-damping 
limits. 

KEY WORDS: First passage times; magnetization relaxation; superpara- 
magnets. 

1. I N T R O D U C T I O N  

The p rob lem of thermal ly ,  ac t iva ted  escape of a par t ic le  t r apped  in a 
metas tab le  state of a po ten t ia l  field has been exhaust ively s tudied ever since 
the p ioneer ing  work  of K r a m e r s  (l) and  has found appl ica t ions  in a wide 
range of physical  systems descr ibed by formal ly  equivalent  Langevin  equa-  
tions. A number  of me thods  for ob ta in ing  the decay rate has been 
developed,  the most  no tab le  recent ly being the uniform expans ion  of the 
first passage t ime of M a t k o w s k y  etal . ,  (2) which results in an i tera ted  
express ion valid for all d iss ipa t ion  regimes. 

By contras t ,  the thermal  f luctuat ions of the magnet ic  m o m e n t  of a 
s ing le-domain  fer romagnet ic  par t ic le  and  its decay t oward  therma!  equi-  
l ibr ium have received scant  a t tent ion.  The p rob lem was in t roduced  by 
Ndel (3) and  further  deve loped  by Brown.(4) The la t ter  au thor  considered the 
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stochastic dynamics of the magnetization vector of a small ferromagnetic 
single-domain (superparamagnetic) particle, subject to a damping field and 
interacting with a random magnetic field. The magnetization is taken to be 
uniform throughout the particle at all times. Brown's starting point was a 
Langevin equation in Gilbert's form where the effective magnetic field has 
a damping and a stochastic external field component: 

dM=7~ ~ ~V dM 1 dt OM r / -~-  + h(t) (1.1) 

Here M(t) is the total magnetic moment of the ferromagnetic particle, V is 
its Gibbs free energy, 7o is the ratio of magnetic moment to angular 
momentum, r/ is a dissipation constant, and h(t) is a random isotropic 
magnetic field such that at temperature T 

(hi(t) h~(t + t') ) = 2qT6~3(t') (1.2) 

It is easy to see from Eq. (1.1) that M 2 ( t ) = M ~  is conserved at all times, 
with Ms the saturation magnetization. From Eqs. (1.1) and (1.2), Brown 
derived a Fokker-Planck equation for the probability distribution of the 
magnetic moment vector M(t) and gave the decay rate when the magnetic 
anisotropy energy is axially symmetric. The corresponding Fokker Planck 
equation is in this case 1 + 1 dimensional; it was studied subsequently by 
Aharoni (5) and Agarwal eta/. (6) In Section 2 we give another derivation of 
the decay rate in strictly axially symmetric models. This derivation is then 
the basis for our argument that this model fails to reflect the properties of 
even the simplest realistic model as far as the prefactor is concerned. It is 
the purpose of this paper to give the correct prefactor of the thermal decay 
rate in a system of arbitrary magnetic symmetry and to show where it 
differs from the predictions based on axial symmetry and why. We use the 
mean first passage time formalism of Matkowsky et al. (a) 

Our derivation is based on Brown's theory, which, however, makes 
two assumptions not in strict accordance with reality. Both of these 
assumptions are accepted in this work; nonetheless, they merit some dis- 
cussion. First, it is clear that magnetization density cannot be uniform 
throughout the volume of the particle, since this assumption neglects all 
effects on the edge of the domain, i.e., on the particle surface. A damped 
phenomenological equation of motion allowing for spatial dispersion of 
magnetization and of the relaxation terms was derived by Bar'yakhtar~7~; 
the boundary conditions are discussed by Aharoni. ~8/ The problem thus 
formulated presents formidable mathematical difficulties. Also, the surface 
properties appear to depend drastically, and in a way that is not well 
understood, on the manner of sample preparation. (9) Thus, a realistic 
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model, for a given particle volume and shape, is essentially unattainable. 
For this reason we neglect surface effects and assume uniform rotation of 
magnetization within the particle. Brown's approach was also criticized by 
Walton, (1~ who pointed out that the interaction of a magnetic moment 
with a heat bath is constrained by quantum selection rules, so that only a 
fraction of the bath bosons will couple to the magnetization at any given 
time. Under such circumstances the response and collision times may be of 
similar order of magnitude and the white noise model fails: The specific 
form of the colored noise correlation function and of the corresponding 
memory kernel depend of course on the specific damping model. A 
theoretical study of the damping mechanism in superparamagnets was 
carried out by Garg and Kim, (11/who considered magnetoelastic coupling 
and energy dissipation by sound waves in the elastic environment. These 
authors arrive at the spectral density J(co)~co 3 and conclude that the 
damping is weak. Competing models shall indubitably be published in the 
future. In the present work we restrict ourselves to the memoryless case in 
both the weak and the intermediate-to-high (IHD) limits. Our results on 
decay in systems with memory are reported in a separate work,/121 where 
we derive the corresponding phenomenological equations of motion and 
also introduce a generalized Euclidean action on phase space for path 
integral applications. 

After these preliminaries, let us specify our model. Let there be a 
single-domain ferromagnetic particle whose Gibbs free energy is a function 
of the magnetic moment M and an external magnetic field B only. We 
neglect all changes in the internal structure occurring during the irre- 
versible decay process. Under these conditions the Gibbs free energy is 
effectively the Hamiltonian H. Orientation in space is given by spherical 
coordinates. We introduce the notation p = cos 0 (so that M3 = M,p)  and 
define for magnetization the conjugate pair P =  (M,JTo)p and q). To the 
saturation magnetization M s there corresponds an angular momentum 
Po = Ms/7o. In the scaled variables p and ~0, Gilbert's equation, after some 
manipulation, becomes 

/~ = -h ' (1  - p2) kip - g'H~ + Npi(p, q)) hi (1.3a) 

c~=g 'Hp-h ' (1  _p2)-1  H~o+ N~o,(p, (p)hi (1.3b) 

Summation over i is assumed. The noise coefficients Npi and N~, are rather 
complicated; we refer the reader to ref. 4, Eqs. (3.3)-(3.5), for we shall 
make no use of their explicit form. Further, h' is the effective dissipa- 
tion constant and g' is the inverse of the effective angular momentum 
corresponding to the saturation magnetization M. Note (below) that it 
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is dissipation dependent. Introducing the dimensionless parameters 
~z = MsVoq and A = 1 + 0~ 2, we write 

g'= I/(PoA), h'= g'c~ (1.4) 

Subscripts of the Hamiltonian H(Mi)= H(q~, p) denote partial derivatives. 
The Fokker-Planck equation for the probability distribution W(~0, p) of 
the stochastic process (1.1), (1.2) is, according to Brown, (4. 

0W 
-~7-= Lr W (l.5a) 

where the operator Lr is defined on the scaled phase space as 

+ ~  _(oD(qo, p)+h,T(l_p2) 1 ~? (1.5b) 

Here/~D and ~bo are given by the deterministic part of Eqs. (1.3), i.e., with 
Np and N o both set identically to zero. It is easy to see that the equilibrium 
solution of Eq.(1.5) is indeed Wo=exp(--H/T). The probability of 
finding the system in an element dP&o of the phase space is 
Prob = W(q~, P) dP do,. 

2. A X I A L L Y  S Y M M E T R I C  M O D E L  

Let us first turn our attention to the axially symmetric case, where 
H(M3) = H(p). A typical Hamiltonian of this kind is 

K( M - M 2 ) - B M 3  -BM~.cosO+Ksin20 (2.1) 

where B is an external magnetic field in the 3-direction and K ' =  K/M 2 is 
an anisotropy constant. This Hamiltonian was used by Brown in his 
original work. (4) The Fokker-Planck equation is 1 + 1 dimensional in 
spherical coordinates and the methods developed for the Smoluchowski 
equation may be used to advantage. We follow here the asymptotic expan- 
sion method of Matkowsky and Schuss {13~ to obtain the first nonzero 
eigenvalue. Let us write the solution of Eq. (1.5) in the form W(p, t)= 
e x p ( - H / T )  u(p, t), so that 

m _ _ ~  _ _ 1 (?u T (I _p2) (l p2) Hp-~p (2.2) 
h' c3t 
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and the corresponding eigenvalue problem becomes 

_h,T~p [(1_ 2 dv.q dr. 
P ) ~ p J - l - h ' ( 1 - p 2 ) H p ' ~ p = . ; t n v n  (2.3) 

Restricting ourselves to the first nonzero eigenvalue, we see that u(p, t) 
evolves in time as v ( p ) e x p ( - 2 1  t), 21 > 0, and that the decay rate is ~c = 21. 
Let now the Hamiltonian have a single maximum at Pl,  - 1 < Pl < 1, such 
that H ~ E l + � 8 9  2 in its vicinity. Let H have further two 
minima at the edges of the domain p = + 1. These minima are assumed not 
to be extrema of H, so that H ~ E o + H ' ( 1 ) ( p - 1 )  to the right of p~; 
obviously, H ' ( - 1 ) > 0  and H ' ( 1 ) < 0 .  The calculation is essentially the 
same as in ref. 13 and only the result will be presented. Let the initial 
probability distribution be peaked around the energy minimum at p = 1. 
Then the decay rate is given by 

[ ,, exp [ 1 (2.4) 

The quantity h' ]H'(1)l is the drift rate out of the minimum a t p  = 1, as can 
be seen from the equations of motion, and the difference (E 1 - E  o) is 
obviously the barrier height. 

This formula was previously given in a slightly different form by 
Brown, (4~ who in his derivation used the assumption that the friction force 
is strong enough to keep the populations in both wells thermalized at all 
times. The decay rate (2.4) goes to zero with decreasing dissipation 
strength, as expected for low dissipation r/, since h ' ~  t 1. Throughout our 
derivation we never imposed the condition of thermal equilibrium on the 
well subsystem and thus we conclude that the formula (2.4) holds in the 
entire range of the dissipation constant r/. This circumstance is also quite 
obvious from the first passage time analysis, since in the axially symmetric 
case the separatrix coincides with the contour of critical energy E c = E 1 in 
the phase space, as discussed in the following section. In this context the 
following observation should be made. The random field h(t) couples to 
both the momentum and position, as seen from Eq. (1.1). For  this reason 
it is impossible to claim that one of the conjugate variables becomes 
rapidly thermalized by strong dissipation. Hence it is impossible to write 
down a true Smoluchowski equation for the overdamped limit. The (1 + 1)- 
dimensional equation (2.1) originates from symmetry, not thermodynamic, 
considerations. 

The axially symmetric model exemplified by the Hamiltonian (2.1) has 
two pathological features which distinguish it from all real systems. (14/ 
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First, there exist no saddle points on the energy surface. This is in contrast 
to any realistic anisotropy energy expression, in which the minima are 
always linked by flux paths of least energy leading through a finite number 
of saddle points. This applies also to realistic uniaxial systems, since the 
ever-present anisotropy in the basis plane breaks the axial symmetry. The 
second demerit of the strictly axially symmetric model has to do with the 
parametrization in spherical coordinates. In these coordinates the 3-direc- 
tion which is chosen to coincide with the easy axis is singular. The direct 
consequence of this circumstance is the presence of the singular, cusplike 
minima which are nothing but cutoffs of the energy at p = _+1. No well 
frequency can be defined for such minima, since H"( _+ 1 ) do not exist. The 
singular minimum in conjunction with the smooth maximum brings about 
the T -1/2 temperature dependence of the prefactor. (~3~ Obviously, this 
dependence is an artifact of the parametrization; the physically equivalent 
Hamiltonian obtained from (2.1) by a rotation about the 1-axis by re/2 has 
in spherical coordinates smooth minima in the 2-direction, but of course no 
saddles. To sum up: the axially symmetric Hamiltonian lacks saddle points, 
which are otherwise a common feature of all real systems and the 
parametrization, in which the easy axis coincides with the singular direc- 
tion of the spherical coordinates, brings about unphysical effects in the 
prefactor. For this reason predictions based on the axially symmetric model 
must be rejected as faulty. 

3. S Y S T E M S  OF G E N E R A L  S Y M M E T R Y ,  IHD  L IM IT  

Consider now a system of definite point symmetry. Let the total 
energy be given as a polynomial in the direction cosines v z. From this 
expression one arrives at the Hamiltonian H(q~, p) via the obvious sub- 
stitution 

v = {(1 - p2)1/2 cos O, (1 - p2)1/2 sin O, p} 

We recall that the points p = _+1 are singular points of this parametriza- 
t ion. The Hamiltonian is defined on a phase space which is a closed 
manifold [the scaled space (q~, p) is the surface of a unit sphere] and thus 
a local energy minimum is surrounded by two or more saddle points, 
depending on the symmetry of the problem. The total probability flux out 
of the metastable minimum equals the sum of fluxes through all the saddle 
points. In an asymmetric case, e.g., when an external field is applied, some 
of these fluxes become exponentially small and may safely be neglected. 
The total flux out of the metastable minimum is in this case dominated by 
the energetically most favorable path. 
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For simplicity, now let the metastable minimum and one of the saddle 
points lie on the line p = 0, their coordinates being (~0 o, 0) and (~ol, 0), 
respectively. The minimum and the saddle point of interest may always be 
brought into this position by a suitable rotation of the axes. 

When the equation of motion (1.3) is linearized in the vicinity of any 
point on the equator, the leading terms of the noise coefficients Np a n d N  o 
become constant, as can most easily be seen from the linearized form of the 
Fokker-Planck operator (1.5b) without reference to their explicit form. 
Thus, we are dealing with additive white noise exhaustively treated in the 
IHD limit by the formalism of Brinkman, (15) Landauer and Swanson, (16) 
Langer, (~7) and Dygas et al. (18) The results of the latter work are readily 
applicable to the present case. Let us define the well ( i=  0) and saddle 
(i = 1) frequencies by the Hessians 

(i) (i) (H(i)]21 (3.1) (02-- - - -Po 2 ]He[H(~o,, 0)]l = P o  2 dHppg~, o - , -  P O "  ' 

where H(p~ = Hpp(q) i, 0), etc. The Hessian is positive at the minimum and 
negative at the saddle point. Let further v c be the positive eigenvalue of the 
noiseless dynamics (l.3) linearized about the saddle point. With 
~o --+ ~o - q) 1, Eqs. (1.3) become 

1)= , (1) H p ~ q ~ ) _ g ( H p , o p + H ~ o q ~  ) (3.2a) - h  (Hpp p+ (17 , (17 

�9 _ _  , ( 1 )  ( 1 )  ~ X  , ( 1 )  ~o - g (Hpp p + Hpo t o t - h  (Hp~ o p + H~oo ~P) (3.2b) 

so that 

with 

V c = � 8 9  , (1) (1) h (Hpp q- H ~ ) ]  (3.3) 

,2 (1) + Hoo ) + 4e)~/A (3.4) D = h  (Hpp (1) 2 

The decay rate in the IHD limit is then given in terms of these quantities 
as(iS) 

1 C O O v c e x p [ - ( E - E ) l  (3.5) 
= 27r co--~ 

The transition-state theory result is recovered in the limit r/--+ 0, since 
v c ( r / = 0 ) = c o l .  In the high-dissipation limit r/--+ oo, V c ~ t l  -~, so that in 
this regime the decay rate is inversely proportional to the dissipation 
constant r/. 

For  illustration, consider now a system of cubic symmetry. The total 
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energy in terms of the direction cosines is given to the sixth order in the 
direction cosines by (14) 

2 2 2 2 2 2 2 2 
E = K I [ V l v  2 + v  3 "-~- V 2 !.' 3 V 2 ] -1"- K 2  v 11~2123 

and we assume K~ > 0, as for iron. Usually, K2 is an order of magnitude 
smaller than K1. There are three easy axes and six corresponding energy 
minima of E0=0.  Let us choose the one that lies at (0,0); then 

( o )  _ ( o )  Hpp - H , ~  = 2K~. The minimum is surrounded by four equivalent saddle 
points with energy E1 = K~/4. One of them is located at (0, ~/4) and the 
requisite second derivatives are H ~  K1 + K2/2 > 0 and H (~) = -2K~ < 0. pp q~g~ 
The mixed derivatives vanish along the equator. The decay rate through 
one saddle follows from (3.5); the total rate is obviously four times as 
much. The magnetization, originally directed along the [ 1 , 0 , 0 ]  axis, 
decays in the [0, 1, 0] and [0, 0, 1] directions toward thermal equilibrium. 

The formulas (3.3)-(3.5) allow us to calculate the prefactor also in the 
presence of an external magnetic field. The resultant expressions are rather 
clumsy; we list them in a separate work (x4) for magnetic fields parallel to 
an easy axis of systems of cubic symmetry (both Fe and Ni type) and to 
the easy axis of uniaxial crystals with tetragonal, triclinic, and hexagonal 
symmetry in the basis plane. 

A small note is due at this point. A Hamiltonian, albeit 
phenomenological, containing odd powers of the momentum P is 
aesthetically rather unsettling. Apart from the case of triclinic symmetry, it 
is always possible, (~4) by rotational symmetry, to write down a 
Hamiltonian that is an even function of the momentum. In this case the 
mixed derivatives Hp~ vanish along the equator p = 0. 

4. SYSTEMS OF GENERAL SYMMETRY,  
U N D E R D A M P E D  LIMIT 

Of some interest also is the low-dissipation limit, in particular in view 
of the estimate by Garg and Kim (n) that the dissipation strength in super- 
paramagnets is low. The asymptotic expansion method of the first passage 
time (2~ affords a convenient approach to this problem. As expected, the 
decay rate turns out to be proportional to the energy loss (to first order 
in the small dissipation constant t/) per period of the underdamped motion 
at E = E 1 . We prefer to give here a brief sketch of the derivation, since the 
generalization of published results to our case is not quite obvious. 

The low-dissipation limit is distinguished by the fact that the contour 
of critical energy E1 lies within the boundary layer near the separatrix F. 
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Thus, we introduce a domain Q such that E < E, in the interior of Q and 
E =  E1 on the boundary 0(Q). By assumption, ?(Q) lies so near to F that 
the passage time from ?(Q) to F is negligible (to leading order in T) in 
comparison to the mean time ,(~0, p) required to reach ?(Q) starting from 
a point (~p, p) ~ Q. The mean first passage time T(~p, p) is a solution of the 
equation 

L~; r(~p, p) = - 1  (4.1) 

subject to the boundary condition r = 0 on 0(Q). Here L~ is the adjoint of 
the Fokker-Planck operator (1.5b). 

Following ref. 2, we set 

~(~0, p) = ~(Q) UT(~P, p) (4.2) 

r(Q) is an exponentially large quantity independent of the initial point 
(q~, p), and max Uv(Cp, p) = 1 in Q. Then, to leading order in T, we obtain 
from (4.1) that du~)/dt=O along any trajectory within Q, so that, by our 
normalization, u~ )= 1 within Q. In order to satisfy the boundary condi- 
tion, we introduce now a boundary layer by the stretching transformation 
s =  (E 1 - E ) / T .  Equation (4.1) then yields, to leading order in T, 

ur  = 1 - exp ( - s )  (4.3) 

which satisfies the boundary condition u r =  0 on 8(Q) and the matching 
condition u r = l  within Q, i.e., as s ~ o e .  Using the fact that 
L r e x p ( - H / T ) = O ,  we now employ Green's theorem to obtain the con- 
stant z(Q): 

r(Q) = ~e dp d~p e HIT 

h 'T  ~a(Q) e - " / r [ (1  -- p2)(OuT/c~p) d~o - (1 - p2) , (OuT/Oq~) dp] 

(4.4) 

The integral in the numerator is easily evaluated in the asymptotic limit 
and the denominator may be expressed in terms of the Hamiltonian using 
Eq. (4.3). Thus, we finally arrive at 

z(Q) = (2~zT/~ooLIE) exp[-(E 1 - E o ) / T ]  (4.5) 

This is the mean first passage time from all points in Q, except for a 
boundary layer of width O(T), to c~(Q). We introduced here the energy loss 
~E per period of the underdamped motion at E = E1 by 

A E =  ~ ~o(Q) [(1 - p2) kip d~o - (1 - p2)-~ H~ dp] (4.6) 
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We recall that e is the dimensionless dissipation parameter. In the under- 
damped limit it is small by assumption and only the leading terms of 
(4.5)-(4.6) are retained. As argued above, in the underdamped limit the 
mean first passage time from the interior of Q to c~(Q) almost coincides 
with the mean exit time out of the well (i.e., with the mean first passage 
time to the separatrix F) and the decay rate to leading order in T is then 
given by ~c-1= 2r(Q). We see that the formula (4.6) is formally equivalent 
to that for the low-dissipation first passage time in the Kramers problem, 
where the dissipative coupling is such that AE is proportional to the 
action. (1,2) 

The transition region of dissipation in which neither the intermediate- 
to-high limit (3.5) nor the low-dissipation limit (4.5) holds is easily 
estimated. In this region the ratio of the low-dissipation decay rate to the 
transition-state-theory result is near to unity, ~c/~Crs= AE/T,~ 1. The con- 
tour integral in (4.6) has a value E, which is on the order of magnitude of 
the barrier height, so that AE= c~E with E/T>> 1 by assumption. In the 
intermediate region a bridging expression may be found using the for- 
malism of ref. 2 or ref. 20. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

This paper is concerned with the thermal decay rate of magnetization 
in small, ferromagnetic, single-domain particles, i.e., in superparamagnets. 
Our starting point is the Fokker-Planck equation due to Brown <4) for the 
orientation probability distribution of the magnetization vector, which is 
assumed to be homogeneous throughout the volume of the particle. 

In Section 2 we consider the axially symmetric model studied pre- 
viously by various authors. (4 6) We write down the corresponding (1 + 1)- 
dimensional Fokker-Planck equation in spherical coordinates and find its 
first nonzero eigenvalue. The decay rate thus obtained is formally valid in 
the entire dissipation range. However, we argue that the prefactor is 
unphysical. The point is that the easy axis coincides with the singular direc- 
tion of the spherical coordinates where the minima become cusplike. This 
is an artefact of the parametrization and it vanishes if the easy axis is 
placed in a regular direction where the minima become smooth. The 
cusplike minima lead to the T 1/2 dependance of the prefactor (2.4) for any 
dissipation strength. The axially symmetric model also differs qualitatively 
from any real system in that it lacks saddle points. 

In Section 3 we give the thermal decay rate of magnetization in 
systems of general point symmetry in the intermediate- to high-dissipation 
(IHD) limit. We discuss the flux geometry and illustrate our results on the 
example of Fe-type cubic symmetry. A detailed list of the requisite quan- 



Overbarrier Relaxation of Magnetization 483 

tities for various anisotropy energy symmetries encountered in practice is 
given in ref. 14. In this work we also allow for an external magnetic field 
to be present along an easy axis. The underdamped limit is considered in 
Section 4. We show that the decay rate is proportional to the energy loss 
per period of the underdamped almost periodic motion at the barrier 
energy. An estimate of the region where neither the IHD nor the under- 
damped limit holds is given. 

The dissipation strength in superparamagnets is unknown. We quote 
the theoretical prediction of low dissipation strength by Garg and Kim, m) 
but no experimental data seem to be available. In principle, it is possible 
to estimate the dissipation strength (r/ or c~) experimentally, or at least to 
decide whether the system is underdamped or in the IHD region. Such 
experiments would involve either direct measurement of the decay rate 
( ~  T -~ in the underdamped, and T independent in the IHD region) or of 
the mean excess energy as proposed by Naeh et a/. (19) (T independent in 
the underdamped, and ~ T in the IHD region). Another possibility is the 
measurement of the linewidth in the magnetic resonance of super- 
paramagnets. (2~ It is not clear how to measure the excess energy, and the 
evaluation of all measurements (even if carried out with sufficient accuracy) 
is hampered by the need for extremely uniform particle distribution in the 
sample. Thus, e.g., in decay rate measurements the observed quantity is the 
mean rate over the particle ensemble and unless the energy dependence on 
particle volume and the volume distribution are known a priori  the data 
cannot be analyzed. In particular, even the exponential T dependence of 
the decay rate is affected by the averaging. 
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